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A quasi-analytical method is presented which permits calculating highly nonlinear behavior 
of selfconfined plasma configurations. Using the possibilities of the analytic computer code 
REDUCE, the equations are transformed to (k, w)-Fourier space. The use of analytical 
methods also in back-transformation avoids difficulties with steep gradients. A dispersion 
relation is established from which growth rates of instabilities can be calculated. The 
application of the method is demonstrated for Burgers’ equation with a specific initial con- 
dition for which an analytical solution is known. 0 1986 Academic press, IW. 

1. INTRODUCTION 

Until recently, problems of magneto-plasma flows were generally calculated with 
numerical methods, using difference schemes to solve the system of nonlinear dif- 
ferential equations. For such magneto-plasma flows, the magnetic field generally 
has a simple configuration, while the flow equations can rarely be simplified. 
Strongly nonlinear behavior and turbulence phenomena growing out of large 
amplitude instabilities play an important role, also various transport processes have 
to be taken into account. This macro-turbulent regime is frequently characterized 
by large Reynolds numbers, where values of lo9 and larger are not uncommon in 
turbulent structures. This requires solution of the complete nonlinear equations 
over time intervals that are large compared to the Alfven time. However, the com- 
mon numerical schemes used in hydrodynamics and gas dynamics fail in many 
cases due to several reasons. First, the size of the turbulent structures is essentially 
determined by the magnitude of the grid chosen and, second, the mass conservation 
law is often violated. The problems encountered in the numerical treatment of tur- 
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bulence are discussed in detail by Saffman [l]. Last but not least, most numerical 
schemes require the introduction of the von Neumann viscosity to avoid numerical 
instability for otherwise steep gradients, resulting in erroneous values for gradient- 
driven instabilities and transport processes. 

From previous experience with the calculation of turbulent flows in 
hydrodynamics, the first two authors developed a REDUCE code [2,3,4] for the 
manipulation of strongly nonlinear equations, combining it with FORTRAN for 
numerical evaluation. This was then applied to the consideration of extremely 
strong turbulence plasmas [S], where essentially the strong nonlinear terms were 
retained while linear effects were neglected. 

Besides posing difficulties in physical interpretation, this procedure is unsuitable 
for describing the evolution of turbulence from originally stable plasma states via 
instabilities. Particularly, the calculation of plasma focus dynamics with the tur- 
bulent late phase after m = 0 instability [6] requires a method permitting a descrip- 
tion of the time-dependent development of turbulence. For this purpose, one of us 
(H.J.K.) decided to treat the problem by a transformation into Fourier space, 
similarly as was previously done. e.g., in an analytical theory of pinch instabilities 
[7]. Contrary to the linearization carried out in this paper by Wilhelm, the com- 
plete nonlinear terms were to be retained in this new method. Furthermore, the 
transformation into (k, w)-space and establishing of the macroscopic dispersion 
relation were to be handled by REDUCE. Also back-transformation was to be 
made at least in part analytically. 

The REDUCE-FORTRAN hybrid code, developed with the above con- 
siderations in mind, handles the derivation of the dispersion relation analytically, 
while the solution of the dispersion relation is done numerically. This numerical 
solution is then fitted to an analytical formula for further symbolic manipulation. 
The interchange of symbolic manipulation, numerical calculation, and analytical lit 
programs is characteristic for this hybrid code. Due to the fact that also back-trans- 
formation from (k, o)- into (r, r)-space is carried out analytically, the problems 
connected with steep gradients do not arise. 

This new method was essentially developed for plasma flows in magnetic fields of 
simple configuration. It is applicable to a number of problems for self-confined 
plasmas where the radial dimension extends to infinity, treated hitherto by various 
well-known MHD-codes. However, it is feasible to apply it only in those cases, 
where the magnetic field configuration is relatively simple and the emphasis is on 
studying unstable plasma behavior. This method was first applied to the nonlinear 
development of the m = 0 instability in the plasma focus [S] using a one-fluid for- 
malism and then extended to further phases of plasma focus operation employing a 
two-fluid theory [9]. At present it is applied to a four-fluid description of magneto- 
plasma dynamics [lo] including also microturbulence, describing plasma focus and 
z-pinch phenomena. 

This paper describes the mathematical procedure used in solving the systems of 
nonlinear differential equations and does not contain details of programming in 
REDUCE. For details concerning REDUCE, see references [2-4]. The programm- 
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ing procedure for the REDUCE-FORTRAN hybrid code will be published sub- 
sequently. A paper containing results from calculating the dynamic phenomena in 
the POSEIDON plasma focus experiment is in preparation and will be published 
elsewhere. 

In the following, the calculation procedure is explained in detail and 
demonstrated for the simple case of Burgers’ equation with a delta-function for the 
initial conditions. The reasons for using Burgers’ equation with this initial condition 
are : 

(1) It represents the type of nonlinear equation considered for solution, cf. 
Eq. (11, 

(2) it is Fourier-transformable, 
(3) it has an analytical solution against which the accuracy of the proposed 

method of solution can be checked. The use of Burgers equation does not imply a 
general applicability to all nonlinear Navier-Stokes problems with the present state 
of this method. An extension to bounded inhomogeneous systems is in preparation. 

As a further example, the solution of Burgers’ equation with F(x) = U sin kx for the 
initial distribution is given. 

2. METHOD OF SOLUTION 

As the method of solution described in this section shall mainly be applied to 
problems of magneto-plasma flows, the system of nonlinear differential equations to 
be solved consists of the laws of conservation of mass, momentum and energy, 
together with the various transport coeficients, and the Maxwell equations, as 
given in Ref. [lo]. The types of equations in this reference can be written in a 
general form, Eq. (1). Thus it is required to solve a system of nonlinear equations of 
pth order representing a general form of the Navier-Stokes type of partial differen- 
tial equations, 

DL,(V, a/at) is the operator describing the linear terms, while D&(V, a/at) contains 
all nonliner effects. F,(r, t) represents the inhomogeneous part of Eq. (1). The 
Einstein summation convention for the subscripts (v, I = l,..., p) is adhered to. To 
achieve a solution we have to execute the following steps: 

(i) Programming of the system of difSerentia1 equations (1) in vector form, 
where every component of a vector equation is represented by a value of the sub- 
script p of Eq. (1). This step will be executed by REDUCE. 
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(ii) Separation of the dynamical variables into a constant unperturbed value 
and “perturbation” series by a “perturbation” ansatz, 

(2) 

(3) 

In Eq. (2), Ic/MO is a constant representing an equilibrium solution of Eq. (1). This 
means that assuming 

VJJr, 1) + 0 uniformly for Irl + co or Jt( + co 

there follows 

b$(r, t) + ho (lrl + co or (t( + co). 

Since every derivation in r or t will vanish at infinity, t+QPO is the “unperturbed” 
solution of (1). till0 must not be interpreted as an initial value of the dynamical 
variable $Jr, t), as the initial value is also determined by setting t = t, in the 
expansion (3). The complete spatial and temporal variations of IC/Jr, t) are 
described by the magnitude $,(r, t). For further details see step (iii). 

The operations described by Eqs. (2) and (3) are carried out by REDUCE. E is 
an ordering parameter solely introduced for programming convenience. With the 
aid of this ordering parameter it is later possible to sort the equations in powers of E 
with the aid of REDUCE (see step (iii)). The value of E thus should be unity and 
the convergence of the series (3) is solely determined by the behavior of the 
$Jr, t). The variable $Jr, t) is defined by Eq. (6). Thus, Eqs. (2) and (3) cannot 
in general be interpreted as a conventional perturbation ansatz. 

It is possible, unlike the behavior of the usual perturbation series, that up to a 
value MO of the summation index K in (3), the solutions $Jr, t) show growing ten- 
dency 

$pK(r, t) > Gph.- ,(h t), K <MO, (4) 

so that convergence of the series requires expansion to high orders of rc (K $ M,). In 
the cases calculated by us previously, we had to develop this series up to an order 
of K %Z 100 to 200. 

The convergence of (3) cannot be proven for the general case of Eq. (1). Thus, 
the following procedure for ascertaining the convergence of the series (3) is recom- 
mended: 

(a) For every specific problem the $Jr, t) must be calculated up to order A4 
(see step (iii) ff). 

(b) These solutions are summed up according to Eq. (3). If it is ascertained in 
a calculation of members of order higher than A4 (e.g., up to M+ 20) that the result 
deviates only within an accepted range of accuracy, then the series is terminated. 
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(c) For an alternating series it will have to be investigated how large the dif- 
ference of the numbers turns out to be in relation to their magnitude. If this 
quotient is smaller than an acceptable limit, there follows another termination con- 
dition for the series. In the cases calculated by the authors, the convergence was 
also ascertained using Leibniz’s convergence criterion. The $Jr, t) in these cases 
showed, as a rule, alternating behavior. Hence, it is possible that in summing 
Eq. (3), differences of two large terms occur. This does not play a negative role in 
the analytical part of the code (REDUCE). However, in the numerical part (FOR- 
TRAN), care must be taken that no serious errors are introduced by such differen- 
ces of large terms which may lead to numerical instabilities. 

The method discussed here shows similarity to the method of weighted residuals 
or collocation method, e.g., that of Kantorovich-Ritz [ 111. 

(iii) Inserting the ansatz (3) into the system of differential equations (1) and 
ordering to powers of E. 

Performing this with REDUCE, there result the following expressions from Eq. (l), 
in zeroth order of E, 

(q” + 4hoqJ Ic/YO = 03 (5) 

in IC th order of E, 

(D:, + $ioD’,!,,) $v, = Rpm (6) 

with 

(K = 1): 

(K> 1): 

In connection with Eq. (5), 
have included E = 0, thus, 

Rplk t) = I;,@, t), 
K-1 

(74 

&A9 t) = - C [6,D&?v,K-jl. 
j=l 

0) 

the following should be noted. If the sum (3) would 

M 

then the zeroth member would have been 

&“iJpo(r, t) = 7po(ry t) 

with the tip0 a function of r and t. As, however, J/p0 is a constant; qpo(r, t) must 
vanish. This is achieved by starting the series with IC = 1. Nevertheless, Eq. (5) 
describing the $,. represents the zeroth order of E. 

Equations (6) represent now a system of linear differential equations in every 
order IC 2 1 of E with inhomogeneous parts R,, expressed by Eqs. (7). This system 
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describes the excitation of the $,, arising from the solutions qYKI (rc’ < rc). Thus, in 
every order of E, the linear problem must be solved successively and the addition of 
all solutions $,, yields the total solution $,(r, t) up to the order JC. 

It is now clear how nonlinearity develops. Contrary to the usual perturbation 
ansatz, the excitation of the rcth term can be stronger than that of the (K - 1)th 
term if the damping of the amplitudes included in the Di,-term can be neglected 

I1 with respect to the advective Dlpv -term. Thus, in every order, the “perturbation” 
will grow due to the magnitude of the “inhomogeneous” term until a change of 
phase of the right-side-term of Eq. (6) gives rise to a decremental behavior of the 
solutions, thus enforcing the convergence of the system. 

With the abbreviation 

we can now write Eq. (6) as 

D ‘6 i rlr,(r, t) = Wr, t), ( ) (9) 

where D(V, a/at) is a linear dispersion matrix of order p xp, 

and @Jr, t) and RJr, t) are column vectors of order p, 

4L(r7 t) \IIJr, t) = . I . I 
RIKk t) I , R,Jr, t) = . 

I . I 

The general solution of (9) is given by 

I . 1. 

\Sr,(r, t) = \Srdr, f) + \IliK(rl f), 

where QhK is the homogeneous term of the solution, 

(loa) 

(lob) 

UW 

(lib) 

and \SliK the inhomogeneous part 

\Ir,(r, t) = i d3r’ dt’ GJr, r’; t - t’) RK(r’, t’), (llc) 

with GK(r, r’; t- t’) being the matrix of Green’s function of the system. 
As this proposed method of calculation shall be applied to the treatment of 

systems of differential equations (1) of the Navier-Stokes type which always con- 
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tain a viscous term in the operator DtY, the variables $,(r, t) vanish sufficiently fast 
for r + cc and/or t + 00, so that their square-integrability is secured. Again assum- 
ing that the series (3) converges, the $Jr, t) defined by Eq. (6) are also square- 
integrable. Thus the definition in Eq. (11~) for the inhomogeneous part of the 
solution is justified. Since the form of the dispersion matrix D does not depend on 
the order K, we only have to solve the homogeneous problem in first order of E 
(K = 1). For higher orders it is sufficient to solve the inhomogeneous part of Eq. (9). 

For further treatment of the integral in Eq. (11) the following remarks are 
necessary. 

The purpose of the calculation method is the description of the dynamics of self- 
confined plasmas, where the radial dimension extends to infinity. Thus there are no 
boundary surfaces and Green’s function in Eq. (11~) can only depend on r-r’. 
Therefore Eq. (11~) becomes a convolution integral 

qiK(r, t) = s d3r’ dt’ G.(r - r’, t - t’) RJr’, t’) 

and the following procedures are justified. 
Of course, if there are boundary surfaces, the description of GK(r, r’; t - t’) as a 

retarded Green’s function fails. The treatment of this case needs a modification of 
the method discussed in this paper. This extension is in progress at present and will 
be published in further papers. 

(iv) Wave ansatzfor the tJ,(r, t). 

The considerations for the selection of the *Jr, t) were already discussed in 
step (iii). As this method is at the present time essentially applied to the solution of 
the turbulent magneto-plasma dynamic equations and the turbulent state grows out 
of instabilities and nonlinear wave development, as is well known, the emphasis is 
on a description in Fourier space. Hence we select the Fourier ansatz, 

(12) 

which is substituted into the equations by REDUCE. In Eq. (12), k is the wave vec- 
tor, w the angular frequency and j = h, i. This can be done for all realistic problems, 
where the square-integrability of the $Jr, t) is given. It is important to emphasize 
the fact that the Fourier integral theorem is used and not an expansion in Fourier 
series. Therefore the entire (k, w)-space gives contributions to the Fourier transform 
of q,,,(r) t) and there is no error usually due to cutting off the Fourier-series. 
Inserting Eqs. (12) and (1 la) into Eq. (9), and considering the relationships of dif- 
ferential operators in (r, t)-space with wave number and angular frequency in 
Fourier space, 

+ -ik=-i(k,,k,,k,), (13) 
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we obtain, by using the folding theorem: 

D( -ik, io) $,,Jk, co) + D( - ik, io) G,(k, w) &(k, co) = fi,(k, co). 
v,.(k.o) 

(14) 

Instead of a differential equation system we now have a linear system of algebraic 
equations in (k, o)-space, which we can solve by algebraic manipulations. 

(v) Linear dispersion relation and solution in (k, w)-space. 

To solve the homogeneous problem 

D( - ik, io) Q,,,Jk, co) = 0 (15) 

we have to formulate the linear dispersion relation 

det(D(-ik, io))=O. (16) 

Computing this with REDUCE, there generally follows an implicit equation 

D(k, co) = 0. (17) 

Thus the solution yields a relationship between the dependence of the frequency 
and that of the k-vector leading to a relationship between the spatial and the time- 
dependent development of the solution by Fourier transformation. 

It is now essential to solve the dispersion relation. The first step is to determine 
its zeros. The Nyquist plot [ 121 permits a graphical determination of the zeros of 
Eq. (17). In addition Nyquist has shown that, also for the nonlinear case, the 
growth and decay rates of all instabilities of the system are determined by these 
singularities. A suitable numerical method for the determination of the zeros of 
Eq. (17) was developed by Rauchle and collaborators [ 13, 14, 151. It is pointed out 
that the discussion here only concerns the determination of the zeros and the 
numerical solution of the dispersion relation. The question whether a resulting 
instability is absolute or convective will have to be investigated separately if such 
information should be required [ 16 3. 

From the implicit formula (17) we now derive the explicit k-dependence of o, 

D(k, co) = 0 +-+ w = o,(k) (q = l,..., Q <p). (18) 

This cannot be done generally in a strictly analytical procedure by REDUCE. 
Hence, we have to employ numerical methods (REDUCE-FORTRAN-hybrid 
code) to find the explicit k-dependence of w. This is not a critical point, however, 
since we can lit these results by available numerical routines within the range of the 
parameters obtained from experiment, thus obtaining an analytical formula for 
o(k). The imaginary part of w,(k), 

y(k) = Im(q(k)) (q = L.., Q <PI, (19) 
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yields the linear growth or decay rates of the instabilities. Therefore, we can write 
for the homogeneous solution in (k, w)-space, 

To solve the inhomogeneous part of the system (14), we have to calculate 
Green’s function e .(k, w). It is immediately seen from (14) that 

(20) 

e,(k, o) = D -‘( - ik, iw) = de~(b((~i~,i~)) = D $‘“;:“), 
9 

(21) 

with D + being the adjoint matrix of D for all orders of E. Summarizing, we obain 
the following solutions for the system in (k, o)-space from (20) and (21), 

lc= 1: Qir,tk, WI= 2 $,,tk, u,(k)) 4w - o,(k)) + D ;ii2;) fi,(k, co), (22) 
q=l 9 

For the solution of the homogeneous part of the dispersion relation, the introduc- 
tion of boundary values may be required. For details, see step (viii). 

(vi) Elimination of o by complex integration. 

Since the (r, t)-dependence of the solutions is required, we have to execute the 
retransformation of the i$,(k, w) from Eqs. (22) and (23) according to Eq. (12). The 
w-integration is performed tirst. The first term of (22) is easily integrated using the 
properties of the J-function. To calculate the inhomogeneous term of (22) and 
Eq. (23), it is practical to carry out the w-integration for Green’s function (21) and 
then use the folding integral (11~) for evaluating the time-dependent solution. We 
have to evaluate the integral 

g& t - t’) = j-, 2n 
m do D+(-ik, im)eiwt,+r.i 

D(k u) * 7 (24) 

If we close the contour in the upper complex o half plane by a semicircle at infinity 
(C,), all poles of e(k, w) situated in the upper half plane will be enclosed as shown 
in Fig. 1 with the pole ol. 

In general, the path of integration is not straightforward. In most cases, the path 
of integration follows along C1 and encircles the singular pole as was shown by 
Landau [ 171. 

However, in a few cases a simpler choice for the path of integration is possible, 
such as shown in Fig. 1, due to the special time behavior of Green’s function. The 
contribution of C2 will vanish if t - t’ > 0 since D + and D(o, k) only contain 

581/66/l-11 



160 MAURER, HAYD, AND KAEPPELER 

t 
Imb) 

FIGURE 1 

powers of o and e- We-“) + 0 for w -+ ice. If we close the contour in the lower half 
plane (C,), enclosing now all poles of e(k, o) in the lower half plane (ou in 
Fig. 1 ), the contribution of C3 will vanish in the same way if t - 1’ < 0. Thus the 
value of (24) will be determined by the contribution of the poles which are the zeros 
of the dispersion relation D(o, k). 

Complex integration yields from (24), see also [lS], 

g(k, t - t’) = 1 ~,(k)‘“41”“-“‘8(t - t’) 
Y” 

with 

_ 1 8,,(k)e’wqI”“‘~“‘s(t/ - t), 
YI 

(25) 

where q,, and q, represent the number of poles in the upper and lower half-plane, 
respectively, and @(t - t’) is the Heaviside function. This can be inserted in 
Eq. (11~) and we obtain, by setting 

RJr’, t’) = 12 a,(k’, t’) eP’k”“r’ (264 

and 

I 
d+le -ir’(k ~ k’) = 8,$&k _ k’) 

the following result for the inhomogeneous part of the system, 

q,(r, 1) = z [ 2 d,,(k) eeik ” 1 dt’ eio~u(k)(f-“)~K(k, t’) 

- ; 5 f$ o,,(k) emi’ I‘ 1 dt eim@(k)(‘-rr)&(k, t’). 

Wb) 

(27) 
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Finally we have to evaluate the time-dependent integral in Eq. (27). The method of 
integration depends on the specific problem and cannot be performed generally. 
There are various possibilities, e.g., integration in closed form, or by partial 
integration, or by evaluating the integrand in a power series of t’, which can be 
realized by analytic (REDUCE) manipulations or by numerical treatment. Thus we 
obtain for each K the complete solution $JT, t) as an integral over’k-space con- 
taining the Fourier transforms of all solutions qYKl(r, t) with IC’ c K. Hence we are 
able to compute all solutions as an integral of k-space successively up to the order 
desired. 

(vii) Integration over k-space and summing up the solutions. 

To determine the local variation of qYK(r, t) we have to perform the k-integration 
of Eq. (27). There are few possibilities of doing this in a completely analytical treat- 
ment. 

As Green’s function or the linear dispersion relation, respectively, are the same in 
every order, the solution in every order can formally be written as a multiple 
folding integral in which only the general solutions of first order remain. As is dis- 
cussed in the following step (viii), initial and boundary conditions are also solved 
by their satisfying the first order solution. With the complete solution of the 
problem in first order thus the solutions of every order can be calculated by suc- 
cessive integration over k, the complete solution in all orders being obtained by 
summation. This integration can in general be carried out only by numerical 
procedures. 

A more tractable method proposed here is the alternative use of fit programs. 
Here, the result of the numerical solution for qi2(r, t) from Eq. (27) is fitted to an 
analytical expression. With this, the excitation term i%,(k, t) for the calculation of 
the solutions of third order Qi3(r, t) from Eq. (27) can then be formulated 
analytically, the third order solution itself is again obtained numerically and then 
again fitted to an analytical expression. With this, the fourth order solution is star- 
ted, etc. This yields a procedure where exactly the same REDUCE manipulation 
can be employed in every order and only the FORTRAN part in the hybrid-code is 
calculated anew. 

In some cases, where, e.g., the variable Ii/Jr, t) is almost constant everywhere 
with the exception of strong local gradients in r-space, the k-integration can be 
performed via partial integration according to 

(28) 

if there is only a k,-dependence and \Ir,(k, c 0, t) = 0. This Eq. (28) can be carried 
out analytically by REDUCE programming up to high orders of n. We thus obtain 
an analytical form of the @Jr, t) permitting a consideration of boundary values 
such as x + 0 in Eq. (28) in an exact analytical manner. 
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The solution @Jr, r) obtained will be summed up analytically or by numerical 
treatment, yielding the final result given by Eqs. (2) and (3). 

(viii) Initial values and growth rates. 

For the treatment of initial value problems in this method it generally must be 
established that the system under consideration is in its equilibrium state for time 
t < to. This means that 

IC//AL t < to) = Iclpo 

and that for t = t, there exists an initial value 

CW 

tip@, to) = cp,W. (29b) 

For the differential equations of the Navier-Stokes type treated here, Green’s 
function has poles only in the upper w half-plane. Thus it can be shown from 
Eq. (27) that 

\Sr.(r, t= to)=0 (fc> 11, 

so that the series development Eq. (3) yields for the initial value 

(294 

tip0 + 4,1(rT to) = cp,(r). (29d) 

Hence it is possible to calculate, for a given initial value problem, the complete 
solution in first order and with the aid of Eq. (27) the solutions of higher order up 
to the desired degree. Again it is mentioned, as previously, that tip,, does not con- 
stitute the complete initial value, as is seen from Eq. (29d). Furthermore, the 
solution is independent of the choice of E. 

After a solution of the complete (non-linear) dispersion relation is obtained, non- 
linear growth rates for the various appearing instabilities can be calculated, 

y,(r, t) = Re ( g ln($,(r, t)) > , 
p = l,..., p. 

The equations of steps (i)-(viii) then constitute the complete set of the equations of 
this quasi-analytical method for calculating turbulent behavior of self-confined 
magnetoplasmas. 

3. SOLUTION OF BURGERS' EQUATION AS AN EXAMPLE 

As a simple example of our method we have chosen Burgers’ equation 

; 4x, t) + u(x, t) g u(x, t) = v 
2 

-$4x, t), (31) 
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a one-dimensional Navier-Stokes equation for incompressible flow, neglecting the 
influence of pressure forces. For further treatment, particular attention must be paid 
to the fact that with this calculation method the only problems which can be 
calculated are those for which a dispersion relation exists. This means that for a 
given initial distribution 

u(x, t= to)=F(x) (32) 

the k-Fourier transform must exist. Therefore only velocity fields of the type 

u(x, t) = I.40 + qx, t), (33) 

where u(x, t = to) is a square-integrable function in x, can be treated. 
Performing now the ansatz (see Eqs. (2), (3)) 

u(x, t) = 240 + f &Y&(X, t) 
Ic=l 

yields the nonlinear differential equation of zeroth order 

duo a*uo --v- 
‘0 ax a2 =o (automatically fulfilled) 

and leads to the system of linear differential equations 

lc= 1: 
a _ aii, a*fi,=0 
-%+UO~-“p 3 at 

lc> 1: 
a _ aii, a%, 
-p+UO~-” ax* - = R&(x, t), 

with 

K-laiqx t) _ 
R&(x, t)= - 1 A u, -j(x, t). 

jzl ax 

(344 

Wb) 

(34c) 

The homogeneous problem K = 1 leads to the linear dispersion relation (see 
Eq. (17)) by Fourier transformation 

D(k, u) = io - iu,k + vk* = 0, (35) 

resulting in 

u(k) = uok + ivk*. (36) 
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According to Eq. (20) we obtain 

do dk 
12,(x, t) = i p G,(k) e-i(kx-wf). 240~ - o(k)). @(t - to) 

s dk = z~,(k)e-‘(k~-“~‘)e -vk2r. Q(t- to) (37) 

which shows a decaying behavior for z’ + co. 
To obain the solutions K > 1 we have to calculate Green’s function Eq. (1 lc). Per- 

forming the Fourier transformation and integration over w-space with respect to 
the pole, 

w(k) = u,k + ivk2 

in the upper half plane (see Fig. l), there follows, after some manipulations, 

G(~-~‘, r-l~)=l~e-ik(-~-~‘-~o(r-r’))-~kz(r-~’)Q(~-~/). (38) 

For further treatment without loss of generality u0 can be set equal to zero. 
Evaluating the integral in Eq. (38) yields 

where 

G(x-x’, t-t’)= 

erfc(z ) = (2/&) laJ em”* dz’, 
I 

(39) 

(40) 

is the complementary error function. If we assume the initial condition (to = 0), 

4% 0) = fix), (41) 

we obtain from Eqs. (29) and (37) (E = 1): 

F(k) = fi,(x, 0) ++ C,(k) = f dx F(x) eikx. (42) 

Introducing the abbreviation 

&L 2v s’ dx I+)l, 
L 

where 2L is a characteristic length of the system, we obtain with 

(43) 
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in Eq. (37), according to (42)-(44), 

u,(x, t) = -VI?& dx’f(x’) erfc I 
x-x’ 

( ) 
- 

4vt 

=- 
$ -4 (J ) 

f dx’f(x’) exp - 
(x--y2 

4vt . (45) 

It is evident that ii,(x, t) satisfies the diffusion equation 

; 6,(x, t) = v a2 
$--g %cG f). (46) 

Therefore ii,(x, t) is the solution for weak nonlinearities (R -+ 0). 
For higher orders of E (K > l), the solution for &(x, t) is obtained by using 

Eqs. (llc), (34d), (39), (40), (43), and (44). After some manipulations we get as a 
result 

iK(x, t)= -i yT1 ( dt’: j dx’ Cj(x’, t’) iKej(x’, t’) & erfc ( X-x’ 
zJv(r-t’) 

). (47) 
JZl m 

With Eq. (47) the solutions z&(x, t) can be evaluated by REDUCE code or 
appropriate integration techniques, depending on the type of the initial distribution 
f(x). Thus we can write the complete solution of the problem 

u(x, t) = f i&(X, t) (48) 
lC=l 

with ii,(x, t) from Eq. (45) and &(x, t), (K> l), from Eq. (47) provided that the 
series converges. 

Two distinct cases of an initial distribution will be treated subsequently. 

(I) For the special initial distribution 

f(x) = W), (49) 

where the characteristic length tends to infinity (L --, co), there follows for the 
soluGon of first order, 

t&(x, t)=Rficyk (50) 

with 

y = x/J% (51) 
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The second order solution can be derived from ii,(x, t) with the aid of Eqs. (27) and 
(47). After some algebra follows 

r&(x, t) = $RH,(x, t) erfc(y/2), (52) 

where erfc(x) is the complementary error function Eq. (40). 
The method can now be continued for higher orders. It is easily seen that for n th 

order there follows the relation 
- 

- $ erfc(y/2) 
> 

n 
f&(x, t) = El(x, t) (53) 

so that the complete solution becomes 

(54) 

An investigation of the range of convergence of the sum in Eq. (54) shows that it 
converges almost everywhere [21]. The convergence is assured if 

- 

t erfc(y/2) < 1. 
L 

(55) 

This means, if we define (see Eqs. (43), (51)) 

y=2Jz, A=$ j IF(x)1 dx = 1 (56) 
m 

that the function 
- 

C(R, d)=terfc(JZ)- 1 CO. 

The region of the convergence is shown in Fig. 2. It shows that there is convergence 
for all x, t, if i? < 2 and for all K if d > 0.083. If 1 --t co convergence is given for 
A #O. 

Therefore the sum in Eq.(54) can be expressed by a closed analytical function. 
There follows 

24(x, t) = R JjZ eey2’“/( 1 + ii? erfc( y/2)). (58) 

This closed form of the solution can be continued to the entire (A, R)-space (see 
Fig. 2). Thus we get a solution for all x, t and i?. 
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FIG. 2. Region of convergence of Eq. (54): C(K, A) i 0 A = x2/(2t), jrn IF(x)1 dx = 1 (Eq. 44). 

Introducing the Reynolds number as the quotient of advective force to viscous 
force, for which the relation 

Re=ln(l +R) (59) 

holds [21], there results, finally, for the complete solution 

u(x, t) = J$ (60) 

This completely agrees with the known analytical solution of Burgers’ equation 
with a delta-function as initial condition [18]. It shows that it is possible to 
calculate the exact analytical solution of this simple case of Brugers’ equation with 
the quasi-analytical method proposed here via a transformation into Fourier space. 
In this simple case it was not necessary to use FORTRAN for any part of the 
operation. 

To show the correctness of this FORTRAN part of the hybrid code, the same 
problem was again calculated in the manner used for more complicated systems, 
namely by implementing the REDUCE manipulations with numerical calculations. 

Figure 3 shows the exact solution of Burgers’ equation (60) for a Reynolds num- 
ber of 1000. Also indicated in this figure is an approximate solution with the 
method described in this report. However, contrary to the general practice of con- 
tinuing approximations until a maximum error of 1.5% is obtained, the solution in 
Fig. 3 has a maximum error of 6.5% with 70 members of the series development, 
instead of 292 for an accuracy of 1.5 percent. 

(II) As a second example, the initial distribution 

F(x) = U sin(kx) (61) 
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FIG. 3. Exact solution (-) of Burgers’ equation compared with the solution 
of series development (---) for a Reynolds number of 1000. 

containing 70 members 

was chosen. According to Eqs. (43) and (44) we get as the “Reynolds’‘-number 

with the characteristic length 2L = n/k. Hence, 

f(x) = tk sin(kx), 

yielding, with the aid of Eq. (45) 

al(x) = U sin(kx) e-yk2r. 

(63) 

(64) 

According to Eq. (47), there follows for the solution of second order 

u,(~)=~U~(e-~‘~~‘- l)e-2’k2’sin(2kx). (65) 

The solutions of higher order (K > 2) can be evaluated successively using Eq. (47), 
however, for practical treatment it is more practical to perform further calculations 
using the REDUCE-FORTRAN-hybrid code. The solution of the problem is plot- 
ted in Fig. 4, which shows the typical behavior of the solutions of Burgers’ equation. 
It is interesting to note that the growth rate equation (30) at t = 0, 

y(x, r = 0) = ax, 0) + li,b, 0) 
&(X3 0) 

=vk2(1 +acoskx) 

obviously shows the dependence on the “Reynolds’‘-number K 



SELF-CONFINED MAGNETO-PLASMAS 169 

XL ml 

c) c - Oh3 set 

SO 

+0 

;u” 30 

; 20 

3 10 

0 
m 

_______-----_--------- 

-10 
-20 

1 
o 250 SO0 750 1000 

* [ml 

b) t - 223 see 

40 

d) t - 556 see 

x 
% 
3 

50 

40 

30 

20 

10 

0 
m 

__________----_---- --__- 

:::I 0 2so $00 1000 

x Cm1 

FIG. 4. Solution of Burgers’ equation for the initial distribution F(x) = U sin kx. U = 15.45 m/set, 
k = 0.082 l/m, B = 3.5. 105. 

4. CONCLUSIONS 

In this paper we presented a quasi-analytical method for solving systems of non- 
linear differential equations of the Navier-Stokes type including strong turbulence 
with particular reference to self-confined system. The method is characterized by a 
transformation into Fourier space, yielding a macroscopic dispersion relation which 
permits the study of the dispersive behavior of the physical system. Growth rates 
and spectra of various instabilitites can thus be obtained. Complex w-integration 
and ensuing k-integration was carried out resulting in a description of the complete 
behavior in coordinate space and time. The analytical manipulation is achieved by 
REDUCE, necessary numerical solution of the dispersion relation and lit programs 
are made with FORTRAN. The fact that alsatihe back-transformation into (r, t)- 
space is performed analytically avoids problems associated with steep gradients. 
This REDUCE-FORTRAN hybrid code was employed in solving problems of 
plasma focus dynamics [9, 19,203. The reason for selecting Burgers’ equation for 
the demonstration in section 3 of this paper was the fact that for one it is a non- 
linear equation of the Navier-Stokes type and, second, there exists a closed 
analytical solution for a specific initial distribution. In this way it was possible not 
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only to demonstrate the application of the REDUCE procedure in our hybrid code 
but also to show that if there exists a closed analytical solution obtained directly, 
this solution is also obtained by our mathematical formalism via a transformation 
into Fourier space and back. We consider this a proof that our method is in prin- 
ciple correct, though this does certainly not prove that it will be applicable in all 
cases of flow dynamics. As pointed out already, it will be necessary to consider the 
convergence behavior in each individual case. Furthermore, the boundary value 
problem treated in this paper permits only the solution for self-confined systems. An 
extension for bounded inhomogeneous systems is being developed. 

The advantage of this hybrid code lies in the possibility to treat complex systems 
of equations, such as they were established for a four-fluid theory [lo], with a 
reasonable expenditure of calculation time. It is again pointed out that this 
reasonable time expenditure is only achieved through the combination of analytical 
and numerical procedures including fit programs. A pure REDUCE code would, 
for complicated cases, rapidly exhaust the central memory capacity of available 
computer systems, while in treating turbulence phenomena by purely numerical 
methods the accuracy would rapidly decrease [l]. 

In this hybrid code the dispersion relation is established by REDUCE, the 
solution of the dispersion relation is mostly achieved by numerical (FORTRAN) 
procedure, starting with the homogeneous solution. The numerical results then are 
fitted to an analytical function which then is used in the higher order solution. This 
procedure is continued in an alternation of REDUCE procedure, numerical 
calculations and lit programming. Especially in the REDUCE part for the solution 
of higher order members it is possible to repeatedly use the same analytical for- 
mula, so that no new REDUCE time is required. Thus the lit programming helps to 
reduce not only computer time but also storage space, a fact which was especially 
noticeable in the four-fluid calculations of plasma dynamics. 

To give an approximate idea of the time expenditure for this REDUCE-FOR- 
TRAN hybrid code, Table I shows the computer time required for the solution of 
Burgers’ equation as a function of Reynolds number. As the time expenditure is 
dependent on the degree of nonlinearity, the Reynolds number is the decisive 
parameter. 

The times for REDUCE are required only once for solving a specific problem, 
while the FORTRAN times will be required for each example with a new set of 
boundary and/or initial conditions. 

It is of course evident that in this developed quasi-analytical method with the 
REDUCE-FORTRAN hybrid code, no general rules for the treatment of nonlinear 
problems can be given. Each individual case must be treated separately, as also the 
convergence of the series Eq. (3) must be investigated for each individual case. 

It should be of interest to note that A. Bers and collaborators have employed 
symbolic computation in the treatment of nonlinear wave interactions [22]. Their 
method has many similarities to the quasi-analytical method discussed here, 
especially the transformation into Fourier space. The difference lies in the fact that 
Bers et al. use a true perturbation development which is broken off after a limited 
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TABLE I 

Order of Approximation as a Function of Reynolds Number for a 
Maximum Deviation of 1.5% from the Exact Solution 

Renumber 
Number of 

approximation 
VAX 750 CYBER 175 

REDUCE time (set) FORTRAN time (set) 

1 72 720 72.5 
5 87 792 89 

10 98 828 97 
50 140 924 118 

100 165 960 129 
500 246 1068 158 

1000 292 1104 172 
5000 437 1224 210 

10000 520 1284 229 

number of members. The symbolic code used by these authors was MACSYMA. 
Gladd [2] also used MACSYMA in describing symbolic manipulation techniques 
for plasma kinetic theory. He also argues that a combination of symbolic and 
numerical procedures are required, however, he does not give any details in this 
respect. 
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